Introduction to Data Science

Descripción

Este curso presenta a los estudiantes temas relacionados con la ciencia, el análisis y la ingeniería de los datos, a la vez que permite comprender cómo influye en nuestro futuro el aprendizaje automático. Negocios, finanzas, servicios de salud, educación, fabricación, comercio minorista, agricultura... ningún sector es insensible a la ciencia de los datos y la información procesable derivada de este conocimiento clave. 

Los estudiantes a exploran la ciencia de los datos y, potencialmente, a seguir una carrera en este campo tan solicitado. Con los innovadores principios del aprendizaje interactivo y ludificado y nuestro enfoque de práctica inicial, los estudiantes aprenden a pensar con creatividad y a consolidar sus nuevas habilidades. 

Requisitos: 

No existen pre-requisitos para este curso

Tipo de formación: 

De autoinscripción en línea. No requiere capacitación a cargo del instructor.

Prácticas de laboratorio:

29 Actividades para practicar con escenarios del mundo real.

Programa

Module Title / Topic Title

Objective

Module 1: Data Analytics Projects

1.0 Data Analytics Projects

Explain how data analytics projects are organized.

1.1 Analytics in Real Time

Explain the value of data analytics.

1.2 Data Analytics in Action

Describe the phases in the analytics process

1.3 The Project Portfolio

Explain how to create and share a project portfolio

Module 2: Getting started with data gathering and investigation

2.0 Getting started with data gathering and investigation

Perform initial data gathering and investigating using a spreadsheet

2.1 Tools or data understanding

Describe common software tools used in data analytics

2.2 Basic Excel concepts and features

Use basic Excel functions to gather and examine data

2.3 Use simple functions for data analysis

Explain how variables and values are used in data analysis.

Module 3: Preparing and cleaning data for analysis

3.0 Preparing and cleaning data for analysis

Explain how to obtain appropriate data for analysis


Module Title / Topic Title

Objective

3.1 Sources of data

Describe various sources of data that are used in data analytics

3.2 Data in structured files

Describe various types of structured data files.

3.3 Unstructured data

Describe various types of unstructured data sources

3.4 Data preparation

Configure data according to the requirements of an analysis

Module 4: Transforming Data with Excel

4.0 Transforming Data with Excel analysis

Use Excel functions and formulas to transform data for analysis.

4.1 Sorting and filtering data with Excel

Use data analysis tools and techniques to sort and filter data with Excel.

4.2 Formatting and adjusting data

Use data analysis tools and techniques to format and adjust data with Excel

4.3 Data Calculations

Use Excel techniques to perform data calculations

Module 5: Analyze the data using statistics

5.0 Analyze the data using statistics

Perform statistical analyses on data

5.1 Using statistics to interpret data

Describe different types of statistics

5.2 Choosing the right visualization for the job

Select data visualizations to best explain analysis results

5.3 Creating visualizations with Excel

Create visualizations with Excel

5.4 Addressing anomalies in data

Interpret visualizations to identify anomalies in data

5.5 Using Excel to address issues with data

Use VLOOKUP or XLOOKUP in Excel to identify and fix issues

Module 6: Introduction to Relational Databases and SQL

6.0 Introduction to Relational Databases and SQL

Formulate a structured query using SQL

6.1 Basic data management

Explain the basic concepts of databases and data management

6.2 SQL

Create SQL queries to select and output data

Module 7: Introduction to structured queries

7.0 Introduction to structured queries

Formulate a structured query to extract and combine data from multiple tables.

7.1 Relational Database structures

Explain the structure of relational databases.

7.2 Using SQL with multiple tables

Create SQL queries using multiple data tables

7.3 Combining SQL functions to extract data

Use JOIN and other SQL functions to extract data from multiple tables.

7.4 Management features of SQL and alternatives

Describe how SQL is used to manage databases and what its alternatives are.

Module 8: Introduction to Tableau

8.0 Introduction to Tableau

Create visualizations using Tableau

8.1 Introducing Tableau

Use the Tableau interface to visualize data


Module Title / Topic Title

Objective

8.2 Create visualization in Tableau

Import data to create visualizations

8.3 Tableau dashboards

Explain the purpose and functionality of a data dashboard.

Module 9: Ethics and Bias in Data

9.0 Ethics and Bias in Data Analytics

Explain the ethical issues and biases that can affect data analytics.

9.1 Bias in Data Analysis

Explain the types of bias that can impact data analysis results

9.2 Ethical use of data

Explain the ethical issues presented by using data

Module 10: Take the Next Steps

10.0 Take the Next Steps

Revisit your portfolio and learn about building your skillset

10.1 Requirements for a portfolio

Consider making a portfolio and what to include in it.

10.2 Expanding Your Analytics Skills

Describe advanced analytics tools.


Detalles
  1. Sigla: PC-INDATAS