Descripción
Este curso presenta a los estudiantes temas relacionados con la ciencia, el análisis y la ingeniería de los datos, a la vez que permite comprender cómo influye en nuestro futuro el aprendizaje automático. Negocios, finanzas, servicios de salud, educación, fabricación, comercio minorista, agricultura... ningún sector es insensible a la ciencia de los datos y la información procesable derivada de este conocimiento clave.
Los estudiantes a exploran la ciencia de los datos y, potencialmente, a seguir una carrera en este campo tan solicitado. Con los innovadores principios del aprendizaje interactivo y ludificado y nuestro enfoque de práctica inicial, los estudiantes aprenden a pensar con creatividad y a consolidar sus nuevas habilidades.
Requisitos:
No existen pre-requisitos para este curso
Tipo de formación:
De autoinscripción en línea. No requiere capacitación a cargo del instructor.
Prácticas de laboratorio:
29 Actividades para practicar con escenarios del mundo real.
Programa
Module Title / Topic Title |
Objective |
Module
1: Data Analytics Projects |
|
1.0 Data
Analytics Projects |
Explain how data analytics projects are organized. |
1.1 Analytics in Real Time |
Explain the value of data analytics. |
1.2 Data Analytics in Action |
Describe the phases in the analytics process |
1.3 The Project Portfolio |
Explain how to create
and share a project portfolio |
Module 2: Getting started with data
gathering and investigation |
|
2.0 Getting
started with data
gathering and investigation |
Perform initial data gathering and investigating using
a spreadsheet |
2.1 Tools
or data understanding |
Describe common
software tools used in data
analytics |
2.2 Basic
Excel concepts and features |
Use basic
Excel functions to gather and examine data |
2.3 Use simple functions for data analysis |
Explain how variables and
values are used in data
analysis. |
Module 3: Preparing and cleaning data
for analysis |
|
3.0 Preparing and cleaning data for analysis |
Explain how to obtain
appropriate data for analysis |
Module Title
/ Topic Title |
Objective |
3.1 Sources
of data |
Describe various
sources of data
that are used in data analytics |
3.2 Data in structured files |
Describe various types
of structured data
files. |
3.3 Unstructured data |
Describe various types
of unstructured data
sources |
3.4 Data preparation |
Configure data according to the requirements of an analysis |
Module 4: Transforming Data with Excel |
|
4.0 Transforming Data with Excel
analysis |
Use Excel
functions and formulas to transform data
for analysis. |
4.1 Sorting
and filtering data
with Excel |
Use data analysis tools and techniques to sort and
filter data with
Excel. |
4.2 Formatting and adjusting data |
Use data
analysis tools and techniques to format and adjust data
with Excel |
4.3 Data Calculations |
Use Excel
techniques to perform
data calculations |
Module 5: Analyze
the data using
statistics |
|
5.0 Analyze the data using statistics |
Perform statistical analyses on data |
5.1 Using
statistics to interpret data |
Describe different types
of statistics |
5.2 Choosing the right visualization for the job |
Select data visualizations to best explain analysis results |
5.3 Creating visualizations with Excel |
Create visualizations with
Excel |
5.4 Addressing anomalies in data |
Interpret visualizations to identify anomalies in data |
5.5 Using
Excel to address issues with data |
Use VLOOKUP or XLOOKUP in Excel to identify and
fix issues |
Module 6: Introduction to Relational Databases and SQL |
|
6.0 Introduction to Relational Databases and SQL |
Formulate a structured query
using SQL |
6.1 Basic
data management |
Explain the basic
concepts of databases and data management |
6.2 SQL |
Create SQL queries to select and
output data |
Module 7: Introduction to structured queries |
|
7.0 Introduction to structured queries |
Formulate a structured query
to extract and combine data
from multiple tables. |
7.1 Relational Database structures |
Explain the
structure of relational databases. |
7.2 Using
SQL with multiple tables |
Create SQL queries
using multiple data
tables |
7.3 Combining SQL functions to extract data |
Use JOIN and
other SQL functions to extract data
from multiple tables. |
7.4 Management features of SQL and alternatives |
Describe how SQL is used to manage databases and what its
alternatives are. |
Module 8: Introduction to Tableau |
|
8.0 Introduction to Tableau |
Create visualizations using Tableau |
8.1 Introducing Tableau |
Use the Tableau
interface to visualize data |
Module Title
/ Topic Title |
Objective |
8.2 Create
visualization in Tableau |
Import data to create
visualizations |
8.3 Tableau dashboards |
Explain the purpose and functionality of a data dashboard. |
Module 9: Ethics
and Bias in Data |
|
9.0 Ethics
and Bias in Data
Analytics |
Explain the
ethical issues and
biases that can affect data analytics. |
9.1 Bias
in Data Analysis |
Explain the types
of bias that can impact data analysis results |
9.2 Ethical use of data |
Explain the ethical
issues presented by using data |
Module 10: Take
the Next Steps |
|
10.0 Take the Next
Steps |
Revisit your
portfolio and learn
about building your skillset |
10.1 Requirements for a portfolio |
Consider making a portfolio and what to include in it. |
10.2 Expanding Your Analytics Skills |
Describe advanced analytics tools. |